题目内容
如图,□ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE
(1)求证:四边形OCED是平行四边形;
(2)若AD=DC=3,求OE的长.
在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为______.
已知.当时,;当时,.
(1)求出的值;
(2)当时,求代数式的取值范围.
用两种正多边形铺满地面,其中一种是正八边形,则另一种正多边形是( )。
A. 正三角形 B. 正四边形 C. 正五边形 D. 正六边形
已知:在正方形ABCD中,AB=6,P为边CD上一点,过P点作PE⊥BD于点E,连接BP.
(1)O为BP的中点,连接CO并延长交BD于点F
①如图1,连接OE,求证:OE⊥OC;
②如图2,若,求DP的长;
(2)=___________
已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是____.
直线y=-3x+2经过的象限为( )
A. 第一、二、四象限 B. 第一、二、三象限 C. 第一、三、四象限 D. 第二、三、四象限
一个多边形的内角和是它外角和的2倍,则它的边数是___.
某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?