题目内容
函数自变量的取值范围是_____.
如图,⊙是的外接圆,则点是的( )
A. 三条高线的交点 B. 三条边的垂直平分线的交点
C. 三条中线的交点 D. 三角形三内角角平分线的交点
如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为_____.(结果保留π)
如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.(1)判定直线AC是否是⊙O的切线,并说明理由;
(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;
(3)在(2)的条件下,设的半径为3,求AC的长.
如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为______米(精确到0.1).
如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=【 】
A.12 B.9 C.6 D.3
某数学兴趣小组利用大小不等、颜色各异的正方形硬纸片开展了一次活动,请认真阅读下面的探究片段,完成所提出的问题。
探究1:四边形ABCD是边长为1正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,小明看到图(1)后,很快发现AE=EF,这需要证明AE与EF所在的两个三角形全等,但△ABE与△FCE显然不全等,考虑到点E是BC的中点,引条辅助线尝试就行了,随即小明写出了如下的证明过程:证明:取AB的中点H,连接EH,证明△AHE与△ECF全等即可.
探究2:小明继续探索,把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,如图(2)其它条件不变,?结论AE=EF是否成立呢? (填是或否)
?小明还想试试,把条件“点E是边BC的中点”改为“点E是边BC延长线上的任意一点”,如图(3)其它条件不变,那么结论AE=EF是否还成立呢? (填是或否),请你选择其中一种完成证明过程给小强看。
探究3:在探究2结论AE=EF成立的情况下,如图(4)所示的平面直角坐标系中,当点E滑动到BC上某处时(不含B、C),点F恰好落在直线y=-2x+3上,求此时点F的坐标.
如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是( )
A. 4 B. 3 C. 2 D.
定义符号max﹛a , b﹜的含义为:当a≥b时, max﹛a , b﹜=a;当a<b时,max﹛a , b﹜=b.如 max﹛2 , -3﹜=2 , max﹛-4 , -2﹜=-2,则max﹛-x2+2x+3 , |x|﹜的最小值是_________.