题目内容

【题目】关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足( )

A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5

【答案】A

【解析】

试题分析:由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.

解:分类讨论:

①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;

②当a﹣5≠0即a≠5时,

关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根

16+4(a﹣5)≥0,

a≥1

a的取值范围为a≥1.

故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网