题目内容
下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是 .
分式中,当时,下列结论正确的是( )
A. 分式的值为零; B. 分式无意义
C. 若时,分式的值为零; D. 若时,分式的值为零
在平面直角坐标系中,点(﹣4,4)在第_____象限.
在平面直角坐标系中给定以下五个点A(-2,0),B(1,0),C(4,0),D,E(0,-6),从这五个点中选取三点,使经过三点的抛物线满足以y轴的平行线为对称轴.我们约定经过A,B,E三点的抛物线表示为抛物线ABE.
(1)符合条件的抛物线共有多少条?不求解析式,请用约定的方法一一表示出来.
(2)在五个形状、颜色、质量完全相同的乒乓球上标上A,B,C,D,E代表以上五个点,玩摸球游戏,每次摸三个球.请问:摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率是多少?
(3)小强、小亮用上面的五球玩游戏,若符合要求的抛物线开口向上,小强可以得1分;若抛物线开口向下,小亮得5分,你认为这个游戏谁获胜的可能性大一些?说说你的理由.
如图,一个转盘被平均分成12份,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:
①猜是“奇数”,或是“偶数”;
②猜是“大于10的数”,或是“不大于10的数”;
③猜是“3的倍数”,或是“不是3的倍数”.
如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.
狗年春节到了,小英制作了5张大小相同的卡片,在每张卡片上分别写“金”“狗”“迎”“春”“到”五个字,并随机放入一个不透明的信封中,然后让小芳从信封中摸出一张卡片,小芳摸出的卡片是“狗”字的概率是( )
A. B. C. D.
某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过________分钟就会感到不适.(1分米=108纳米)
某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____.
如图,数轴上有三个点A,B,C,请回答下列问题:
(1)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大
多少?
(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?