题目内容

【题目】如图,AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,下列结论正确的有( )个
①AE= (AB+AD); ②∠DAB+∠DCB=180°; ③CD=CB;④SACE﹣SBCE=SADC;⑤AD=AE.

A.2个
B.3个
C.4个
D.5个

【答案】D
【解析】解:①在AE取点F,使EF=BE,

∵AB=AD+2BE=AF+EF+BE,EF=BE,
∴AB=AD+2BE=AF+2BE,
∴AD=AF,
∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,
∴AE= (AB+AD),故①正确;
②在AB上取点F,使BE=EF,连接CF.
在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,
∴△ACD≌△ACF,
∴∠ADC=∠AFC.
∵CE垂直平分BF,
∴CF=CB,
∴∠CFB=∠B.
又∵∠AFC+∠CFB=180°,
∴∠ADC+∠B=180°,
∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正确;
③由②知,△ACD≌△ACF,∴CD=CF,
又∵CF=CB,
∴CD=CB,故③正确;
④易证△CEF≌△CEB,
∴SACE﹣SBCE=SACE﹣SFCE=SACF
又∵△ACD≌△ACF,
∴SACF=SADC
∴SACE﹣2SBCE=SADC , 故④正确.
⑤由①知,AD=AF,且AF<AE,所以AD<AE,故⑤错误.
故选D.
【考点精析】认真审题,首先需要了解角的平分线(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线),还要掌握线段垂直平分线的性质(垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网