题目内容
抛物线图象如图所示,根据图象,抛物线的解析式可能是( )
A. y=x2﹣2x+3 B. y=﹣x2﹣2x+3 C. y=﹣x2+2x+3 D. y=﹣x2+2x﹣3
春节期间,某超市出售的荔枝和芒果,单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元,请问李叔叔购买这两种水果各多少千克?
分式有意义的条件是______.
用配方法解一元二次方程:.
已知抛物线经过两点和,则__________(用“”或“”填空).
如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.
(1)求A,B两点的坐标;
(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:
①若△PBO的面积为S,求S关于a的函数解析式;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为_________.
如图,直线l1经过过点P(2,2),分别交x轴、y轴于点A(4,0),B。
(1)求直线l1的解析式;
(2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D。
?如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N。若,MN=2MQ,求t的值;
?如图2,若BC=CD,试判断m,n之间的数量关系并说明理由。
已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是( )
A. 5 B. 7 C. 5或7 D. 10