题目内容
已知二次函数y=ax2+bx的图象经过点(2,0)和(-1,6).
(1)求二次函数的解析式;
(2)求它的对称轴和顶点坐标.
如图,已知AD∥BE∥CF,它们依次交直线l1,l2于点A,B,C和点D,E,F,如果AB=6,BC=8,DF=21,求DE的长.
如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.
(1)求证:∠ABD=2∠BDC;
(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.
如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠DHF的度数是
A. 35° B. 50° C. 65° D. 75°
已知,点D是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是_______________
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.
如图所示,⊙O的半径OA=4,∠AOB=120°,则弦AB长为____________.
将函数y=x2的图象向左、右平移后,得到的新图象的解析式不可能是( ).
A. y=(x+1)2 B. y=x2+4x+4 C. y=x2+4x+3 D. y=x2-4x+4
如图,点A是函数图象上一点,连接AO交反比例函数的图象于点B,若,则k______.
当自变量x取何值时,函数y=x+1与y=5x+6的值相等?这个函数值是多少?