题目内容
下列图案中既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
如图,直线y?kx3经过点B(-,2),且与 x 轴交于点A.将抛物线 沿 x 轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠OAB 的度数;
(2)抛物线与直线 y?kx3相交于 M,N两点,求△MON的面积.
(3)在抛物线平移过程中,将△PAB 沿直线 AB 翻折得到△DAB,点D 能否落在抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,说明理由.
已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.
如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,则∠BCD的度数为 .
抛物线y=2(x+3)2+1的顶点坐标是( )
A. (3,1) B. (3,﹣1) C. (﹣3,1) D. (﹣3,﹣1)
如图,在中,,于点,点在上,且,连接.
(1)求证:
(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.
如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为__秒.在整个运动过程中,与矩形重叠部分面积的最大值为________________.
如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).
(1)求这个反比例函数的表达式;
(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.
①求OF的长;
②连接AF,BE,证明四边形ABEF是正方形.
函数y=的自变量x的取值范围是( )
A. x≥-1 B. x≥-1且x≠2 C. x≠±2 D. x>-1且x≠2