题目内容

【题目】在等边ABC

(1)如图1,PQBC边上两点AP=AQ,∠BAP=20°,AQB的度数

(2)PQBC边上的两个动点不与点BC重合),P在点Q的左侧AP=AQQ关于直线AC的对称点为M连接AMPM.

依题意将图2补全;小明通过观察、实验提出猜想:在点PQ运动的过程中始终有PA=PM小明把这个猜想与同学们进行交流通过讨论形成了证明该猜想的几种想法:

想法1:要证PA=PM只需证APM是等边三角形.

想法2:在BA上取一点N使得BN=BP要证PA=PM只需证ANP≌△PCM.……

请你参考上面的想法帮助小明证明PA=PM一种方法即可).

【答案】(1)80°;(2)见解析

【解析】

对于(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;

对于(2)①根据题意和轴对称的性质即可画出图形;

如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.

(1)∵AP=AQ,

∴∠APQ=∠AQP,

∴∠APB=∠AQC,

∵△ABC是等边三角形,

∴∠B=∠C=60°,

∴∠BAP=∠CAQ=20°,

∴∠AQB=∠APQ=∠BAP+∠B=80°;

(2)①补全的图如图所示.

②∵AP=AQ,

∴∠APQ=∠AQP,

∴∠APB=∠AQC,

∴△ABC是等边三角形,

∴∠B=∠C=60°,

∴∠BAP=∠CAQ.

Q关于直线AC的对称点为M,

∴AQ=AM,∠QAC=∠MAC,

∴∠MAC=∠BAP,

∴∠BAP+∠PAC=∠MAC+∠CAP=60°,

∴∠PAM=60°.

∵AP=AQ,

∴AP=AM,

∴△APM是等边三角形,

∴PA=PM.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网