题目内容
(Ⅰ)因式分解:16x4-1;6xy2-9x2y-y3
(Ⅱ)计算:(3x+1)(x+2);
[(x2+y2)-(x-y)2+2y(x-y)]÷4y.
分析:(Ⅰ)先把原式进行因式分解,即可求出结果;先提取公因式y,再进行因式分解即可;
(Ⅱ)根据整式的混合运算法则和顺序分别进行计算,即可求出正确答案;
(Ⅱ)根据整式的混合运算法则和顺序分别进行计算,即可求出正确答案;
解答:解(Ⅰ)16x4-1=(4x2-1)(4x2+1)
=(2x+1)(2x-1)(4x2+1);
6xy2-9x2y-y3=y(6xy-9x2-y2)
=-y(3x-y)2;
(Ⅱ)(3x+1)(x+2)
=3x2+6x+x+2
=3x2+7x+2;
[(x2+y2)-(x-y)2+2y(x-y)]÷4y,
=[x2+y2-(x2-2xy+y2)+2xy-2y2]÷4y
=[x2+y2-x2+2xy-y2+2xy-2y2]÷4y
=(4xy-2y2)÷4y
=x-
.
=(2x+1)(2x-1)(4x2+1);
6xy2-9x2y-y3=y(6xy-9x2-y2)
=-y(3x-y)2;
(Ⅱ)(3x+1)(x+2)
=3x2+6x+x+2
=3x2+7x+2;
[(x2+y2)-(x-y)2+2y(x-y)]÷4y,
=[x2+y2-(x2-2xy+y2)+2xy-2y2]÷4y
=[x2+y2-x2+2xy-y2+2xy-2y2]÷4y
=(4xy-2y2)÷4y
=x-
y |
2 |
点评:本题主要考查了整式的混合运算和因式分解;熟记完全平方公式的运用和整式混合运算的法则是解题的关键.
练习册系列答案
相关题目