题目内容

22、要想说明结论:“在一个梯形中,如果同一底边上的两个内角相等,那么另一条底边的两个内角也相等”,以下有三种方法,先看方法一:
如图:

因为四边形ABCD是梯形,
所以AB∥CD,(梯形的定义)
所以∠A+∠D=180°,∠B+∠C=180度.(两直线平行,同旁内角互补)
又因为∠A=∠B,(已知)
所以∠C=∠D.
方法二和方法三如图所示

用了作垂线的方法,请你根据图示,选择其中一种方法说明梯形中如果∠DAB=∠ABC,那么∠ADC=∠BCD.(只选一种方法即可)
分析:若选方法二,只需根据等角的余角相等,证明∠ADE=∠BCF再根据等式的性质即可证明.
解答:解:选方法二.作DE⊥AB于E,CF⊥AB于F,则∠EDC=∠DCF=90°.
∵∠A+∠ADE=90°,∠B+∠BCF=90°,∠A=∠B
∴∠ADE=∠BCF
∴∠ADC=∠BCD
点评:此题主要运用了等角的余角相等.
练习册系列答案
相关题目

请同学们判断下列各式是否成立:

(1)=2;(2)=3;(3)=4;(4)=3

经过计算可知,(1)、(2)、(3)式是成立的;(4)式是不成立的.这说明在二次根式的化简运算中要特别注意,根号里面的数是不能轻易地放到根号外面来的.

细心的同学可能会想,什么情况下根号里面的数能放到根号外面来呢?(1)、(2)、(3)式的成立仅仅是巧合吗?其中会有什么规律吧?我们来分析一下前三个式子的运算过程:

(1)=2

(2)=3

(3)=4

通过把带分数化成假分数的分数运算和分子开方运算验证了这些式子是成立的.

我们再来观察前三个等式左边根号内分数的特点.在三个带分数2、3、4中:

(1)整数部分与分数部分的分子相等:

2=2,3=3,4=4;

(2)整数部分与分数部分的分母有下列关系:

3=22-1,8=32-1,15=42-1.

根据上面的分析和观察,我们不妨观察5+=5,式子=5是不是也成立?

=5

确实是成立的!

大胆地猜想一下,对于一般的形式a+(a为大于1的整数),式子

=a

还会成立吗?我们来验证一下:

=a

(a为大于1的整数).

太妙啦!我们的猜想是正确的.

那么,下列各式成立吗?

(1)=2;(2)=3;(3)=4;(4)=3

能不能由此得出下面的结论呢?

=a

同学们可能还会不满足,还会有更大胆的猜想!那就试试看吧.不要忘记,猜想成为真理,是要经过严格证明的.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网