题目内容

【题目】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是(
A.3cm2
B.4cm2
C.5cm2
D.6cm2

【答案】D
【解析】解:∵∠C=90°,BC=6cm,AC=8cm, ∴AB=10cm,
∵将△BCD沿BD折叠,使点C落在AB边的C′点,
∴△BCD≌△BC′D,
∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,
∴AC′=AB﹣BC′=4cm,
设DC=xcm,则AD=(8﹣x)cm,
在Rt△ADC′中,AD2=AC′2+C′D2
即(8﹣x)2=x2+42 , 解得x=3,
∵∠AC′D=90°,
∴△ADC′的面积═ ×AC′×C′D= ×4×3=6(cm2).
故选:D.

【考点精析】通过灵活运用勾股定理的概念和翻折变换(折叠问题),掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网