题目内容

小明对数学很有兴趣,一日看到一则计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
后,
分析:
1
n(n+2)
=
1
2
×
2
n(n+2)
=
1
2
×
(n+2)-n
n(n+2)
=
1
2
(
n+2
n(n+2)
-
n
n(n+2)
)=
1
2
(
1
n
-
1
n+2
)
得:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
97
-
1
99
)
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
)
=
1
2
(1-
1
99
)=
1
2
×
98
99
=
49
99

试求:(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
98×100

(2)
1
9×13
+
1
13×17
+
1
17×21
+…+
1
97×101
分析:(1)根据题目信息,分母上的两因数的差是2,所以裂项后乘以
1
2
,然后进行计算即可;
(2)根据题目信息,分母上的两因数的差是4,所以裂项后乘以
1
4
,然后进行计算即可.
解答:解:(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
98×100

=
1
2
1
2
-
1
4
)+
1
2
1
4
-
1
6
)+
1
2
1
6
-
1
8
)+…+
1
2
1
98
-
1
100
),
=
1
2
1
2
-
1
4
+
1
4
-
1
6
+
1
6
-
1
8
+…+
1
98
-
1
100
),
=
1
2
1
2
-
1
100
),
=
1
2
×
98
200

=
49
200


(2)
1
9×13
+
1
13×17
+
1
17×21
+…+
1
97×101

=
1
4
1
9
-
1
13
)+
1
4
1
13
-
1
17
)+
1
4
1
17
-
1
21
)+…+
1
4
1
97
-
1
101
),
=
1
4
1
9
-
1
13
+
1
13
-
1
17
+
1
17
-
1
21
+…+
1
97
-
1
101
),
=
1
4
1
9
-
1
101
),
=
1
4
×
92
909

=
23
909
点评:本题考查了有理数的混合运算,读懂题目信息,根据题目提供的信息进行裂项并加减抵消是解题的关键,技巧性较强,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网