题目内容
小明对数学很有兴趣,一日看到一则计算:1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
97×99 |
分析:
1 |
n(n+2) |
1 |
2 |
2 |
n(n+2) |
1 |
2 |
(n+2)-n |
n(n+2) |
1 |
2 |
n+2 |
n(n+2) |
n |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
|
1 |
2 |
1 |
99 |
1 |
2 |
98 |
99 |
49 |
99 |
试求:(1)
1 |
2×4 |
1 |
4×6 |
1 |
6×8 |
1 |
98×100 |
(2)
1 |
9×13 |
1 |
13×17 |
1 |
17×21 |
1 |
97×101 |
分析:(1)根据题目信息,分母上的两因数的差是2,所以裂项后乘以
,然后进行计算即可;
(2)根据题目信息,分母上的两因数的差是4,所以裂项后乘以
,然后进行计算即可.
1 |
2 |
(2)根据题目信息,分母上的两因数的差是4,所以裂项后乘以
1 |
4 |
解答:解:(1)
+
+
+…+
,
=
(
-
)+
(
-
)+
(
-
)+…+
(
-
),
=
(
-
+
-
+
-
+…+
-
),
=
(
-
),
=
×
,
=
;
(2)
+
+
+…+
,
=
(
-
)+
(
-
)+
(
-
)+…+
(
-
),
=
(
-
+
-
+
-
+…+
-
),
=
(
-
),
=
×
,
=
.
1 |
2×4 |
1 |
4×6 |
1 |
6×8 |
1 |
98×100 |
=
1 |
2 |
1 |
2 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
6 |
1 |
2 |
1 |
6 |
1 |
8 |
1 |
2 |
1 |
98 |
1 |
100 |
=
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
6 |
1 |
6 |
1 |
8 |
1 |
98 |
1 |
100 |
=
1 |
2 |
1 |
2 |
1 |
100 |
=
1 |
2 |
98 |
200 |
=
49 |
200 |
(2)
1 |
9×13 |
1 |
13×17 |
1 |
17×21 |
1 |
97×101 |
=
1 |
4 |
1 |
9 |
1 |
13 |
1 |
4 |
1 |
13 |
1 |
17 |
1 |
4 |
1 |
17 |
1 |
21 |
1 |
4 |
1 |
97 |
1 |
101 |
=
1 |
4 |
1 |
9 |
1 |
13 |
1 |
13 |
1 |
17 |
1 |
17 |
1 |
21 |
1 |
97 |
1 |
101 |
=
1 |
4 |
1 |
9 |
1 |
101 |
=
1 |
4 |
92 |
909 |
=
23 |
909 |
点评:本题考查了有理数的混合运算,读懂题目信息,根据题目提供的信息进行裂项并加减抵消是解题的关键,技巧性较强,难度中等.
练习册系列答案
相关题目