题目内容
如图,把一张直角三角形卡片ABC放在每格宽度为12mm的横格纸中,三个顶点恰好都落在横格线上,已知∠BAC=90°,∠α=36°,求直角三角形卡片ABC的面积(精确到1mm).(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
解:作BD⊥l于点D,CE⊥l于点E,如下图所示:
∵∠α+∠CAE=180°-∠BAC=180°-90°=90°,∠ACE+∠CAE=90°
∴∠ACE=∠α=36°
由已知得BD=24mm,CE=48mm,
在Rt△ABD中,sinα=,
∴AB==40mm;
在Rt△ACE中,cos∠ACE=,
∴AC=≈=60mm
∴AB•AC=×40×60=1200(mm2)
答:直角三角形卡片ABC的面积约为1200mm2.
分析:作BD⊥l于点D,CE⊥l于点E,∵∠α+∠CAE=180°-∠BAC=180°-90°=90°,∠ACE+∠CAE=90°∴∠ACE=∠α=36°;在Rt△ABD中,可以解得AB的长,在Rt△ACE中,可以解得AC的长,从而可求得三角形ABC的面积.
点评:本题考查了解直角三角形的运用以及利用作辅助线来解决问题.
∵∠α+∠CAE=180°-∠BAC=180°-90°=90°,∠ACE+∠CAE=90°
∴∠ACE=∠α=36°
由已知得BD=24mm,CE=48mm,
在Rt△ABD中,sinα=,
∴AB==40mm;
在Rt△ACE中,cos∠ACE=,
∴AC=≈=60mm
∴AB•AC=×40×60=1200(mm2)
答:直角三角形卡片ABC的面积约为1200mm2.
分析:作BD⊥l于点D,CE⊥l于点E,∵∠α+∠CAE=180°-∠BAC=180°-90°=90°,∠ACE+∠CAE=90°∴∠ACE=∠α=36°;在Rt△ABD中,可以解得AB的长,在Rt△ACE中,可以解得AC的长,从而可求得三角形ABC的面积.
点评:本题考查了解直角三角形的运用以及利用作辅助线来解决问题.
练习册系列答案
相关题目