题目内容

(2012•北海)如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.
(1)求证:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.
分析:(1)首先连接OC,由CD是⊙O的切线,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根据平行线的性质与等腰三角形的性质,即可证得∠EAC=∠CAB;
(2)①连接BC,易证得△ACD∽△ABC,根据相似三角形的对应边成比例,即可求得AB的长,继而可得⊙O的半径长;
②连接CF与BF.由四边形ABCF是⊙O的内接四边形,易证得△DCF∽△DAC,然后根据相似三角形的对应边成比例,求得AF的长,又由AB是⊙O的直径,即可得∠BFA是直角,利用勾股定理求得BF的长,即可求得tan∠BAE的值.
解答:(1)证明:连接OC.(1分)
∵CD是⊙O的切线,
∴CD⊥OC,
又∵CD⊥AE,
∴OC∥AE,
∴∠1=∠3,(2分)
∵OC=OA,
∴∠2=∠3,
∴∠1=∠2,
即∠EAC=∠CAB;(3分)

(2)解:①连接BC.
∵AB是⊙O的直径,CD⊥AE于点D,
∴∠ACB=∠ADC=90°,
∵∠1=∠2,
∴△ACD∽△ABC,
AD
AC
=
AC
AB
,(5分)
∵AC2=AD2+CD2=42+82=80,
∴AB=
AC2
AD
=
80
8
=10,
∴⊙O的半径为10÷2=5.(6分)

②连接CF与BF.
∵四边形ABCF是⊙O的内接四边形,
∴∠ABC+∠AFC=180°,
∵∠DFC+∠AFC=180°,
∴∠DFC=∠ABC,
∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,
∴∠2=∠DCF,
∵∠1=∠2,
∴∠1=∠DCF,
∵∠CDF=∠CDF,
∴△DCF∽△DAC,
CD
AD
=
DF
CD
,(8分)
∴DF=
CD2
AD
=
42
8
=2,
∴AF=AD-DF=8-2=6,
∵AB是⊙O的直径,
∴∠BFA=90°,
∴BF=
AB2-AF2
=
102-62
=8,
∴tan∠BAD=
BF
AF
=
8
6
=
4
3
.   (10分)
点评:此题考查了切线的性质、相似三角形的判定与性质、等腰三角形的性质、圆周角定理以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网