题目内容

【题目】如图,四边形ABCD是菱形,AC=8,BD=6,DH⊥AB于H.
求:
(1)菱形ABCD的周长;
(2)求DH的长.

【答案】
(1)解:∵四边形ABCD是菱形,

∴AC⊥BD,OA=OC= AC=4,OB=OD= BD=3,

∴在Rt△ABO中,由勾股定理可知AB=5.

∴菱形ABCD的周长=5×4=20


(2)解:∵S菱形ABCD= ACBD=ABDH,

∴DH= =4.8


【解析】(1)先依据菱形的性质求得AO、OB的长,然后依据勾股定理求得AB的长,最后依据菱形ABCD的周长=4AB求解即可;(2)由S菱形ABCD= ACBD=ABDH,可得到DH= ,最后将AC、BD、AB的值代入计算即可.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网