题目内容

【题目】如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.

(1)探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=10,BC=CD,BC>AB,BD、AC为对角线,BD=16.
①若∠ABC=90°,求AC的长;
②过点B作BF⊥CD于F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB的距离.

【答案】
(1)

解:如图1,连接MN、OT交于点A,

MN⊥OT,理由是:

∵OM=ON,TM=TN,OT=OT,

∴△OMT≌△ONT,

∴∠MOT=∠NOT,

∵OM=ON,

∴MN⊥OT


(2)

解:①如图2所示,

∵四边形ABCD为筝形,

∴AC⊥BD,

∵AB=AD,

∴OB=OD= BD= ×16=8,

由勾股定理得:AO= =6,

设OC=x,

∵∠ABC=90°,

∴BC2=AC2﹣AB2,BC2=OC2+OB2

∴82+x2=(6+x)2﹣102

解得:x=

∴AC=OA+OC=6+ =

②如图3所示:

∵四边形ABED为菱形,

∴BE=AD=10,EM=AM=6,

∵∠FBD=∠FBD,∠BMC=∠BFD=90°,

∴△BEM∽△BDF,

∴DF=9.6,

在Rt△DEF中,EF= =2.8,

∴BF=2.8+10=12.8,

∵∠BGF=∠EFD=90°,∠GBF=∠FED,

∴△BGF∽△EFD,

∴FG= = =12.288.

则点F到AB的距离为12.288


【解析】(1)如图1,证明△OMT≌△ONT,得∠MOT=∠NOT,再根据等腰△OMN三线合一的性质得MN⊥OT;(2)①如图2,先根据勾股定理求AO的长,再利用勾股定理列方程求OC的长,则AC=OC+AO,代入得出结论;②如图3,先证明△BEM∽△BDF,可得 ,求出DF=9.6;再通过勾股定理求EF的长,则得BF的长,通过证明△BGF∽△EFD,得 ,所以可以求FG的长,即点F到AB的距离.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网