题目内容
顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE= .
【答案】分析:根据相似比求解.
解答:解:∵△ABC、△BDC、△DEC都是黄金三角形,AB=1
∴AB=AC,AD=BD=BC,DE=BE=CD,DE∥AB
∴设DE=x,则CD=BE=x,AD=BC=1-x,
∴EC=BC-BE=1-x-x=1-2x
∴
解得:DE=.
点评:此题考查了相似三角形的性质与方程思想,相似三角形的对应边的比相等;解题时要注意方程思想的应用.
解答:解:∵△ABC、△BDC、△DEC都是黄金三角形,AB=1
∴AB=AC,AD=BD=BC,DE=BE=CD,DE∥AB
∴设DE=x,则CD=BE=x,AD=BC=1-x,
∴EC=BC-BE=1-x-x=1-2x
∴
解得:DE=.
点评:此题考查了相似三角形的性质与方程思想,相似三角形的对应边的比相等;解题时要注意方程思想的应用.
练习册系列答案
相关题目