题目内容

2012年6月5日是第40个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”。为了响应节能减排的号召,某品牌汽车店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求。市场营销人员经过市场调查得到如下信息:
 
成本价(万元/辆)
售价(万元/辆)
A型
30
32
B型
42
45
(1)若经营者的购买资金不少于576万元且不多于600万元,有哪几种进车方案?
(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?
(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你作为一名购车者,将会选购哪一种型号的汽车?并说明理由。
设A型汽车购进x辆,则B型汽车购进(16-x)辆。
根据题意得: 30x+42(16-x)≤600
30x+42(16-x)≥576  
解得:6≤x≤8.∵x为整数
∴x取6、7、8。
∴有三种购进方案:
A型
6辆
7辆
8辆
B型
10辆
9辆
8辆
 
(2)设总利润为w万元,
根据题意得:W=(32-30)x+(45-42)(16-x)
  =-x+48
∵k=-1<0
∴w随x的增大而减小
∴当x=6时,w有最大值,w最大=-6+48=42(万元)
∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元。
(3)设电动汽车行驶的里程为a万公里。
当32+0.65a=45时,a=20<30
∴选购太阳能汽车比较合算
(1)根据已知信息和若经营者的购买资金不少于576万元且不多于600万元,列出不等式组,求解得出进车方案.
(2)根据已知列出利润函数式,求最值,选择方案.
(3)根据已知通过计算分析得出答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网