题目内容
如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α .
(1) 用含α的式子表示h(不必指出α的取值范围);
(2) 当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?
【答案】
(1) h=30-30tana. (2) 第五层, 1小时后
【解析】(1)过点E作EF⊥AB于F,由题意,四边形ACEF为矩形.
∴EF=AC=30,AF=CE=h, ∠BEF=α,
∴BF=3×10-h=30-h.
又 在Rt△BEF中,tan∠BEF=,
∴tanα=,即30 - h=30tanα.
∴h=30-30tan.
(2)当α=30°时,h=30-30tan30°=30-30×≈12.7,
∵ 12.7÷3≈4.2, ∴ B点的影子落在乙楼的第五层 .
当B点的影子落在C处时,甲楼的影子刚好不影响乙楼采光.
此时,由AB=AC=30,知△ABC是等腰直角三角形,
∴∠ACB=45°,
∴ = 1(小时).
故经过1小时后,甲楼的影子刚好不影响乙楼采光.
(1)利用直角三角形边角关系得出h与α的关系;
(2)把α代入上题的关系中,解出h的高度,然后算出光线落到C点时的α的角度,从而得出需要时间。
练习册系列答案
相关题目