题目内容
如图1,
,点
在第二象限内,点
在
轴的负半轴上,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755358827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107553742181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107553903047.png)
小题1:求点
的坐标
小题2:如图2,将
绕点
按顺时针方向旋转
到
的位置,其中
交直线
于点
,
分别交直线
于点
,则除
外,还有哪几对全等的三角形,请直接写出答案(不再另外添加辅助线);
小题3:在⑵的基础上,将
绕点
按顺时针方向继续旋转,当
的面积为
时,求直线
的函数表达式.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755234781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755265302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755280432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755296271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755358827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107553742181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107553903047.png)
小题1:求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755405319.png)
小题2:如图2,将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755421543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755405319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755452382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755483578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755702434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755717387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755733322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755748440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755764525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755780446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755795753.png)
小题3:在⑵的基础上,将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755483578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755405319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755982556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010755998447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756014423.png)
小题1:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756029591.png)
小题2:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107560451517.png)
小题3:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756060860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756092820.png)
分析:(1)首先在Rt△ACO中,根据∠CAO=30°解直角三角形可以得到OA,OC的长,然后就可以得到点C的坐标;
(2)根据已知条件容易得到△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC;
(3)过点E1作E1M⊥OC于点M,利用S△COE1=4和∠E1OM=60°可以求出点E1的坐标,然后利用待定系数法确定直线CE的解析式.此题有两种情况,分别是E在第二或四象限里.
解:(1)∵在Rt△ACO中,∠CAO=30°,OA=4,
∴OC=2,
∴C点的坐标为(-2,0).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107561078188.png)
(2)△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC.
(3)如图1,过点E1作E1M⊥OC于点M.
∵S△COE1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756123338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756138439.png)
∴E1M=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756138439.png)
∵在Rt△E1MO中,∠E1OM=60°,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107561701132.png)
∴tan60°=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756185660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756201303.png)
∴点E1的坐标为(-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756201303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756138439.png)
设直线CE1的函数表达式为y=k1x+b1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107562638217.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107562791124.png)
∴y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756294440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756310514.png)
同理,如图2所示,点E2的坐标为(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756201303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756138439.png)
设直线CE2的函数表达式为y=k2x+b2,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107563571167.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230107563721157.png)
∴y=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756388461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823010756404545.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目