ÌâÄ¿ÄÚÈÝ
È˽̰æ½Ì¿ÆÊé¶Ô·Öʽ·½³ÌÑé¸ùµÄ¹éÄÉÈçÏ£º¡°½â·Öʽ·½³Ìʱ£¬È¥·ÖĸºóËùµÃÕûʽ·½³ÌµÄ½âÓпÉÄÜʹԷÖʽ·½³ÌÖеķÖĸΪ0£¬Òò´ËÓ¦ÈçϼìÑ飺½«Õûʽ·½³ÌµÄ½â´úÈë×î¼ò¹«·Öĸ£¬Èç¹û×î¼ò¹«·ÖĸµÄÖµ²»Îª0£¬ÔòÕûʽ·½³ÌµÄ½âÊÇÔ·Öʽ·½³ÌµÄ½â£»·ñÔò£¬Õâ¸ö½â²»ÊÇÔ·Öʽ·½³ÌµÄ½â£®¡±
ÇëÄã¸ù¾Ý¶ÔÕâ¶Î»°µÄÀí½â£¬½â¾öÏÂÃæÎÊÌ⣺ÒÑÖª¹ØÓÚxµÄ·½³ÌÎ޽⣬·½³ÌµÄÒ»¸ö¸ùÊÇm£®
£¨1£©ÇómºÍkµÄÖµ£»
£¨2£©Ç󷽳̵ÄÁíÒ»¸ö¸ù£®
½â£º£¨1£©·Öʽ·½³ÌÈ¥·ÖĸµÃ£ºm£1£«x=0£¬
ÓÉÌâÒ⽫x=1´úÈëµÃ£ºm£1£1=0£¬¼´m=2¡£
¡àµ±m=2ʱ£¬¹ØÓÚxµÄ·½³ÌÎ޽⡣
½«m=2´úÈë·½³ÌµÃ£º4+2k+6=0£¬¼´k=£5¡£
£¨2£©Éè·½³ÌÁíÒ»¸ùΪa£¬ÔòÓÐ2a=6£¬¼´a=3¡£
¡à·½³ÌµÄÁíÒ»¸ö¸ùÊÇ3¡£
¡¾½âÎö¡¿
ÊÔÌâ·ÖÎö£º£¨1£©·Öʽ·½³ÌÈ¥·Öĸת»¯ÎªÕûʽ·½³Ì£¬ÓÉ·Öʽ·½³ÌÎ޽⣬¹Ê½«x=1´úÈëÕûʽ·½³Ì£¬¼´¿ÉÇó³ömµÄÖµ£¬½«mµÄÖµ´úÈëÒÑÖª·½³Ì¼´¿ÉÇó³ökµÄÖµ¡£
£¨2£©ÀûÓøùÓëϵÊýµÄ¹Øϵ¼´¿ÉÇó³ö·½³ÌµÄÁíÒ»¸ù¡£