题目内容

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

  ●操作发现:

      在等腰△ABC中,AB=AC,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DFAB于点FEGAC于点GMBC的中点,连接MDME,则下列结论正确的是         (填序号即可)

     ①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB

●数学思考:

  在任意△ABC中,分别以ABAC为斜边,向△ABC外侧作等腰直角三角形,如图2所示,MBC的中点,连接MDME,则MDME具有怎样的数量和位置关系?请给出证明过程;

●类比探索:

  在任意△ABC中,仍分别以ABAC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,MBC的中点,连接MDME,试判断△MED的形状.

  答:          

【答案】 解:

●操作发现:①②③④

●数学思考:

答:MD=MEMDME

1、MD=ME

如图2,分别取ABAC的中点FG,连接DFMFMGEG

MBC的中点,

MFACMF=AC

又∵EG是等腰Rt△AEC斜边上的中线,

EGACEG=AC

MF=EG

同理可证DF=MG

MFAC

∴∠MFA+∠BAC=180°.

同理可得∠MGA+∠BAC=180°,

∴∠MFA=∠MGA

又∵EGAC,∴∠EGA=90°.

同理可得∠DFA=90°,

∴∠MFA+∠DFA=∠MGA=∠EGA

即∠DFM=∠MEG,又MF=EGDF=MG

∴△DFM≌△MGE(SAS),

MD=ME

2、MDME

证法一:∵MGAB

∴∠MFA+∠FMG=180°,

又∵△DFM≌△MGE,∴∠MEG=∠MDF.

∴∠MFA+∠FMD+∠DME+∠MDF=180°,

其中∠MFA+∠FMD+∠MDF=90°,

∴∠DME=90°.

MDME

证法二:如图2,MDAB交于点H

ABMG

∴∠DHA=∠DMG

又∵∠DHA=∠FDM+∠DFH,

即∠DHA=∠FDM+90°,

∵∠DMG=∠DME+∠GME

∴∠DME=90°

MDME

●类比探究

答:等腰直角三解形

【考点解剖】  本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.

【解题思路】  (1) 由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MDME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MDME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG可看成三个角的和,通过变形计算可得∠DME=90°. (3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.

【解答过程】  略.

【方法规律】  由特殊到一般,形变但本质不变(仍然全等)

【关键词】  课题学习  全等   开放探究

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网