题目内容
已知非负实数x,y,z满足
=
=
,记W=3x+4y+5z.求W的最大值与最小值.
| x-1 |
| 2 |
| 2-y |
| 3 |
| z-3 |
| 4 |
设
=
=
=k,
则x=2k+1,y=-3k+2,z=4k+3,
∵x,y,z均为非负实数,
∴
,
解得-
≤k≤
,
于是W=3x+4y+5z=3(2k+1)-4(3k-2)+5(4k+3)=14k+26,
∴-
×14+26≤14k+26≤
×14+26,
即19≤W≤35
.
∴W的最大值是35
,最小值是19.
| x-1 |
| 2 |
| 2-y |
| 3 |
| z-3 |
| 4 |
则x=2k+1,y=-3k+2,z=4k+3,
∵x,y,z均为非负实数,
∴
|
解得-
| 1 |
| 2 |
| 2 |
| 3 |
于是W=3x+4y+5z=3(2k+1)-4(3k-2)+5(4k+3)=14k+26,
∴-
| 1 |
| 2 |
| 2 |
| 3 |
即19≤W≤35
| 1 |
| 3 |
∴W的最大值是35
| 1 |
| 3 |
练习册系列答案
相关题目