题目内容

如图,斜边长为6cm,∠A=30°的直角三角板ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角板ABC的斜边AB上.则三角板向左平移的距离为________cm.


分析:根据平移的概念知各点移动的距离相等,并根据直角三角板的特点解答.
解答:解:设三角板向左平移后,与AB交于点D;故三角板向左平移的距离为B'D的长.
∵AB=6cm,∠A=30°
∴BC=B'C=3cm,AC=3cm
∵B'D∥BC,


∴B'D=(3-)cm;
故三角板向左平移的距离为(3-)cm.
点评:本题考查平移、旋转的性质;平移的基本性质是:
①平移不改变图形的形状和大小;
②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网