ÌâÄ¿ÄÚÈÝ
¸£ÍÞÃÇÔÚÒ»Æð̽ÌÖÑо¿£ºº¯Êýy=x2-x+m£¨mΪ³£Êý£©µÄͼÏóÈçͼ£¬Èç¹ûx=aʱ£¬y£¼0£»ÄÇôx=a-1ʱ£¬º¯ÊýÖµ£¨¡¡¡¡£©
²Î¿¼ÏÂÃ渣ÍÞÃǵÄÌÖÂÛ£¬ÇëÄã½â¸ÃÌ⣬ÄãÑ¡ÔñµÄ´ð°¸ÊÇ£¨¡¡¡¡£©
±´±´£ºÎÒ×¢Òâµ½µ±x=0ʱ£¬y=m£¾0£®
¾§¾§£ºÎÒ·¢ÏÖͼÏóµÄ¶Ô³ÆÖáΪx=
£®
»¶»¶£ºÎÒÅжϳöx1£¼a£¼x2£®
ÓÓ£ºÎÒÈÏΪ¹Ø¼üÒªÅжÏa-1µÄ·ûºÅ£®
ÄÝÄÝ£ºm¿ÉÒÔÈ¡Ò»¸öÌØÊâµÄÖµ£®
²Î¿¼ÏÂÃ渣ÍÞÃǵÄÌÖÂÛ£¬ÇëÄã½â¸ÃÌ⣬ÄãÑ¡ÔñµÄ´ð°¸ÊÇ£¨¡¡¡¡£©
±´±´£ºÎÒ×¢Òâµ½µ±x=0ʱ£¬y=m£¾0£®
¾§¾§£ºÎÒ·¢ÏÖͼÏóµÄ¶Ô³ÆÖáΪx=
1 |
2 |
»¶»¶£ºÎÒÅжϳöx1£¼a£¼x2£®
ÓÓ£ºÎÒÈÏΪ¹Ø¼üÒªÅжÏa-1µÄ·ûºÅ£®
ÄÝÄÝ£ºm¿ÉÒÔÈ¡Ò»¸öÌØÊâµÄÖµ£®
A¡¢y£¼0 | B¡¢0£¼y£¼m |
C¡¢y£¾m | D¡¢y=m |
·ÖÎö£ºÓÉÁ½¸ù¹ØϵÅжÏÁ½¸ùµÄ·¶Î§£¬¸ù¾Ýx1£¼a£¼x2£¬ÔÙÈ·¶¨aµÄ·¶Î§£¬¿ÉÖªx=a-1µÄ·ûºÅ£¬´Ó¶øÈ·¶¨¶ÔÓ¦µÄº¯ÊýÖµµÄ·ûºÅ£®
½â´ð£º½â£ºÓÉÁ½¸ù¹Øϵ¿ÉÖª£¬x1+x2=1£¬x1•x2=m£¾0£¬
¡à0£¼x1£¼x2£¼1£¬
ÓÖ¡ßx1£¼a£¼x2£¼1£¬
¡àx=a-1£¼0£¬x=0ʱ£¬y=m£¬
µ±x£¼
ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬
¡àµ±x=a-1ʱ£¬y£¾m£¬¹ÊÑ¡C£®
¡à0£¼x1£¼x2£¼1£¬
ÓÖ¡ßx1£¼a£¼x2£¼1£¬
¡àx=a-1£¼0£¬x=0ʱ£¬y=m£¬
µ±x£¼
1 |
2 |
¡àµ±x=a-1ʱ£¬y£¾m£¬¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éÁËÁ½¸ù¹Øϵ¡¢º¯ÊýÔö¼õÐÔµÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿