题目内容
【题目】在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 59 | 96 | 116 | 290 | 480 | 601 |
摸到白球的频率 | a | 0.64 | 0.58 | b | 0.60 | 0.601 |
(1)上表中的a=;b=
(2)“摸到白球”的概率的估计值是(精确到0.1);
(3)试估算口袋中黑、白两种颜色的球各有多少只?
【答案】
(1)0.59;0.58
(2)0.60
(3)
解:由(2)摸到白球的概率为0.60,
所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).
答:黑球8个,白球12个
【解析】解:(1.)a= =0.59,b= =0.58,
所以答案是:0.59,0.58;
(2.)“摸到白球”的概率的估计值是0.60,
所以答案是:0.60;
【考点精析】本题主要考查了列表法与树状图法和用频率估计概率的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率才能正确解答此题.
练习册系列答案
相关题目
【题目】星期天小明和同学们去郊外爬山,得到如下数据:
爬坡长度x(米) | 40 | 80 | 120 | 160 | 200 | 240 |
爬坡时间t(分) | 2 | 5 | 9 | 14 | 20 | 30 |
(1)当爬到120米时,所用时间是多少?
(2)爬坡速度随时间是怎样变化的?