题目内容
【题目】如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.
【答案】(1)y=x2+4x+3;(2)h=4,顶点横坐标的取值范围是≤h<或h=4.
【解析】
试题分析:(1)直接用待定系数法就可以求出抛物线的解析式;
(2)由(1)的解析式求出抛物线的顶点坐标,根据抛物线的顶点坐标求出直线OD的解析式,设平移后的抛物线的顶点坐标为(h,h),就可以表示出平移后的解析式,当抛物线经过点C时就可以求出h值,抛物线与直线CD只有一个公共点时可以得出,得x2+(﹣2h+2)x+h2+h﹣9=0,从而得出△=(﹣2h+2)2﹣4(h2+h﹣9)=0求出h=4,从而得出结论.
解:(1)抛物线解析式y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点,
∴,
解得,
∴抛物线的解析式为y=x2+4x+3.
(2)由(1)配方得y=(x+2)2﹣1,
∴抛物线的顶点坐标为M(﹣2,﹣1),
∴直线OD的解析式为y=x,
于是可设平移后的抛物线的顶点坐标为(h,h),
∴平移后的抛物线的解析式为y=(x﹣h)2+h,
当抛物线经过点C时,∵C(0,9),
∴h2+h=9.
解得h=,
∴当≤h<时,平移后的抛物线与射线CD只有一个公共点;
当抛物线与直线CD只有一个公共点时,
由方程组,
得x2+(﹣2h+2)x+h2+h﹣9=0,
∴△=(﹣2h+2)2﹣4(h2+h﹣9)=0,
解得h=4,
此时抛物线y=(x﹣4)2+2与直线CD唯一的公共点为(3,3),点(3,3)在射线CD上,符合题意.
故平移后抛物线与射线CD只有一个公共点时,顶点横坐标的取值范围是≤h<或h=4.