题目内容

精英家教网如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)
分析:首先分析图形:根据题意构造直角三角形;本题涉及多个直角三角形,应利用其公共边构造等量关系,进而可求出答案.
解答:解:在Rt△ABC中,∠CAB=20°,
∴BC=AB•tan∠CAB=AB•tan20°.
在Rt△ABD中,∠DAB=23°,
∴BD=AB•tan∠DAB=AB•tan23°.
∴CD=BD-BC=AB•tan23°-AB•tan20°=AB(tan23°-tan20°).
∴AB=
CD
tan23°-tan20°
30
0.424-0.364
=500(m).
答:此人距CD的水平距离AB约为500m.
点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网