题目内容

【题目】如图,在平面直角坐标系xoy中,⊙O的圆心O在坐标原点,半径OB在x轴正半轴上,点P是⊙O外一点,连接PO,与⊙O交于点A,PC、PD是⊙O的切线,切点分别为点C、点D,AO=OB=2,∠POB=120°,点M 坐标为(1,-).

(1)求证:OP⊥CD;

(2)连结OM,求∠AOM的大小;

(3) 如果点E在x轴上,且△ABE与△AOM相似,求点E的坐标.

【答案】(1)见解析;(2)150°;(3) E(4,0)或(8,0).

【解析】

(1)根据直线与圆相切的性质证明Rt△PDO ≌Rt△PCO,就可以证明OP⊥CD(2)连接OM,利用三角函数值解直角三角形即可(3)根据△ABE与△AOM相似,可以得到边,角的关系,进而得到点的坐标.

(1)连接OD、OC

∵PC、PD是⊙O的切线

∴∠PDO=∠PCO=90° ,PC=PD

∵在Rt△PDO 与Rt△PCO中

∴Rt△PDO ≌Rt△PCO(HL)

∴∠CPO=∠DPO

∵PC=PD,∠CPO=∠DPO

∴OP⊥CD

(2)连接OM,作MH⊥x轴

∵在Rt△HMO中 ∴tan∠HOM= ∴ ∠HOM=30°

∴ ∠AOM=∠HOM+∠POB=30°+120°=150°

(3)由OA=OB=2,∠AOB=120°,得∠ABO=30°

若点E在点B左侧时,不论∠AEB和∠EAB哪个

角等于150°,此时三角形内角和都大于180°

则点E只能在点B右侧

∵∠ABO=30°∴∠ABE=∠AOM=150°

若△ABE与△AOM相似存在两种情况

①△AOM ∽△ABE ∴=

∴ BE=2

∴E(4,0)

②△AOM ∽△EBA ∴=

∴ BE=6

∴E(8,0)

综上所述:E(4,0)或(8,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网