题目内容
(1)22边形的内角和是多少度?若它的每一个内角都相等,那么它的每个外角度数是多少?
(2)几边形的内角和是八边形内角和的2倍?
(3)几边形的内角和是2160°?是否存在一个多边形内角和为1000°?
(4)已知一个多边形,它的内角和等于外角和的2倍,求边数.
(1)22边形内角和:(22-2)×180°=3600°
因为每个内角都相等,所以每个内角为3600°÷22=()°
又因为外角与相邻内角互补,所以每个外角为180°-()=(
)°
另一种方法:因为多边形外角和360°,每个内角相等,那么每个外角也相等,
所以每个外角为
(2)设n边形的内角和是八边形内角和的2倍
则(n-2)×180°=2×(8-2)×180°
n="14"
∴ 14边形的内角和是八边形内角和的2倍
(3)设n边形的内角和是2160°
则(n-2)×180°=2160°
n=14
∴ 14边形的内角和是2160°
设n边形内角和为1000°
则(n-2)×180°=1000°
因为n不是整数,不符合题意
所以假设不成立
故不存在一个多边形内角和为1000°
(4)因为一个多边形内角和等于外角和的2倍
所以:设边数为n
根据题意得:(n-2)×180°=2×360°
n=6
∴ 6边形内角和等于外角和的2倍
解析
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目