如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=
(k≠0)与矩形OADB的边BD交于点E.
(1)填空:OA= ,k= ,点E的坐标为 ;
(2)当1≤t≤6时,经过点M(t﹣1,﹣
t2+5t﹣
)与点N(﹣t﹣3,﹣
t2+3t﹣
)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣
x2+bx+c的顶点.
①当点P在双曲线y=
上时,求证:直线MN与双曲线y=
没有公共点;
②当抛物线y=﹣
x2+bx+c与矩形OADB有且只有三个公共点,求t的值;
③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.
