题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示则①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中判断正确的有( )个.
A.1
B.2
C.3
D.4

【答案】C
【解析】解:①∵开口向下, ∴a<0,
∵对称轴在y轴右侧,
∴﹣ >0,
∴b>0,
∵抛物线与y轴交于正半轴,
∴c>0,
∴abc<0,故正确;
②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,
∴另一个交点的横坐标在0与﹣1之间;
∴当x=﹣1时,y=a﹣b+c<0,故正确;
③∵对称轴x=﹣ =1,
∴2a+b=0,
∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<0,
∴a﹣(﹣2a)+c=3a+c<0,故正确;
④如图,当﹣1<x<3时,y不只是大于0.故错误.
∴正确的有3个.
故选C.
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网