题目内容
(2012•北辰区一模)如图,△ABC中,∠A=50°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2等于( )
分析:根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.
解答:解:∵∠A=50°,
∴∠AEF+∠AFE=180°-50°=130°,
∵沿EF向内折叠△AEF,得△DEF,
∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×130°=260°,
∴∠1+∠2=180°×2-260°=360°-260°=100°.
故选C.
∴∠AEF+∠AFE=180°-50°=130°,
∵沿EF向内折叠△AEF,得△DEF,
∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×130°=260°,
∴∠1+∠2=180°×2-260°=360°-260°=100°.
故选C.
点评:本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.
练习册系列答案
相关题目