题目内容
(2012•滨州一模)如图,任意一个凸四边形ABCD,E、F、G、H分别是各边的中点,图中阴影部分的两块面积之和是四边形ABCD的面积的 .
【答案】分析:分别连接OB、OA、OD、OC,根据E、F、G、H分别是AB、BC、CD、DA的中点,利用三角形同底同高的特点,求证S△AOH=S△DOH,S△AOE=S△EOB,S△BOF=S△COF,S△DOG=S△COG,再将S△AOH+S△AOE+S△COF+S△COG即为阴影部分面积.
解答:解:分别连接OB、OA、OD、OC,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴S△AOH=S△DOH,S△AOE=S△EOB,
S△BOF=S△COF,S△DOG=S△COG,
S△AOH+S△AOE+S△COF+S△COG=S四边形ABCD,
即图中阴影部分的总面积为=S四边形ABCD,
故答案为.
点评:此题主要考查学生对三角形面积的计算,解答此题的关键是分别连接OB、OA、OD、OC,利用三角同底同高的性质求证几个三角形面积相等,此题有一定难度,属于难题.
解答:解:分别连接OB、OA、OD、OC,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴S△AOH=S△DOH,S△AOE=S△EOB,
S△BOF=S△COF,S△DOG=S△COG,
S△AOH+S△AOE+S△COF+S△COG=S四边形ABCD,
即图中阴影部分的总面积为=S四边形ABCD,
故答案为.
点评:此题主要考查学生对三角形面积的计算,解答此题的关键是分别连接OB、OA、OD、OC,利用三角同底同高的性质求证几个三角形面积相等,此题有一定难度,属于难题.
练习册系列答案
相关题目
(2012•滨州一模)已知甲乙两种食物中维生素A和B的含量及甲乙食物的成本如下表:
现将两种食物混合成100千克的混合食品.设混合食品中甲、乙食物含量分别为x(千克)和y(千克),如果混合食品中要求维生素A不低于40000单位,B不低于28000单位.
(1)求x的取值范围;
(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价.
甲 | 乙 | |
维生素A(单位/千克) | 300 | 500 |
维生素B(单位/千克) | 700 | 100 |
成本(元/千克) | 5 | 4 |
(1)求x的取值范围;
(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价.
(2012•滨州一模)已知甲乙两种食物中维生素A和B的含量及甲乙食物的成本如下表:
现将两种食物混合成100千克的混合食品.设混合食品中甲、乙食物含量分别为x(千克)和y(千克),如果混合食品中要求维生素A不低于40000单位,B不低于28000单位.
(1)求x的取值范围;
(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价.
甲 | 乙 | |
维生素A(单位/千克) | 300 | 500 |
维生素B(单位/千克) | 700 | 100 |
成本(元/千克) | 5 | 4 |
(1)求x的取值范围;
(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价.