搜索
题目内容
一个整式减去 -2a2的结果是a2-b2,则这个整式是
A.-a2+b2 B.a2+b2 C.3a2-b2 D.-a2-b2
试题答案
相关练习册答案
【答案】
D
【解析】略
练习册系列答案
智多星创新达标期末卷系列答案
志鸿成功之路塞上名校金考系列答案
指点中考系列答案
100分闯关总复习名校冲刺系列答案
1卷通单元月考过关卷系列答案
浙江新中考系列答案
68所名校图书小学毕业升学必备系列答案
天利38套新课标全国中考试题精选系列答案
中考试题研究满分特训方案系列答案
中考总复习名师A计划系列答案
相关题目
28、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5) ①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001(4分)
问题2:对于形如x
2
+2xa+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2xa-3a
2
,就不能直接运用公式了.
此时,我们可以在二次三项式x
2
+2xa-3a
2
中先加上一项a
2
,使它与x
2
+2xa的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:x
2
+2xa-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-4a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a
2
-6a+8.
31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-4a-12.
问题3:若x-y=5,xy=3,求:①x
2
+y
2
;②x
4
+y
4
的值.
问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001
问题2:对于形如x
2
+2xa+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2xa-3a
2
,就不能直接运用公式了.
此时,我们可以在二次三项式x
2
+2xa-3a
2
中先加上一项a
2
,使它与x
2
+2xa的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:x
2
+2xa-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-4a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a
2
-6a+8.
问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-4a-12.
问题3:若x-y=5,xy=3,求:①x
2
+y
2
;②x
4
+y
4
的值.
问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-4a-12.
问题3:若x-y=5,xy=3,求:①x
2
+y
2
;②x
4
+y
4
的值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总