题目内容
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式为y=x2﹣x+4,对称轴是:直线x=3;(2)P点坐标为(3, ),
理由见解析;(3)在直线AC的下方的抛物线上存在点N(,﹣3),使△NAC面积最大.
【解析】(1)根据已知条件可设抛物线的解析式为y=a(x-1)(x-5).
把点A(0,4)代入上式,解得a=.
∴y= (x-1)(x-5)=x2-x+4= (x-3)2-.
∴抛物线的对称轴是x=3.
(2)存在,P点的坐标是(3, ).如图1,连接AC交对称轴于点P,连接BP,AB.
∵点B与点C关于对称轴对称,
∴PB=PC.
∴AB+AP+PB=AB+AP+PC=AB+AC.
∴此时△PAB的周长最小.
设直线AC的解析式为y=kx+b.把A(0,4),C(5,0)代入y=kx+b,得
解得
∴y=-x+4.
∵点P的横坐标为3,
∴y=-×3+4=.
∴P(3, ).
(3)在直线AC下方的抛物线上存在点N,使△NAC的面积最大.
如图2,设N点的横坐标为tt,此时点N(t, t2-t+4)(0<t<5).
过点N作y轴的平行线,分别交x轴,AC于点F,G,过点A作AD⊥NG,垂足为D.
由(2)可知直线AC的解析式为y=-x+4.
把x=t代入y=-x+4,得y=-t+4.
∴G(t,- t+4).
∴NG=-t+4-(t2-t+4)=-t2+4t.
∵AD+CF=OC=5,
∴S△NAC=S△ANG+S△CGN=NG·AD+NG·CF=NG·OC
=×(-t2+4t)×5=-2t2+10t=-2(t-)2+.
∵当t=时,△NAC面积的最大值为.
由t=,得y=×()2-×+4=-3.
∴N(,-3).