题目内容
如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )
A. 19% B. 20%
C. 21% D. 22%
如图,矩形ABCD中,AB=4cm,BC=8cm,把△ABC沿对角线AC折叠,得到△AB'C,B'C与AD相交于点E,则AE的长________.
如图①,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB,OB于E,F两点.
(1)求A点的坐标;
(2)若OF+BE=AB,求证:CF=CE;
(3)如图②,若∠ECF=45°,给出两个结论:①OF+AE-EF的值不变;②OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.
如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.
已知m2+n2=n-m-2,则-的值是( )
A. 1 B. 0 C. -1 D. -
如图,一次函数的图象与反比例函数(为常数且)的图象交于,两点,与轴交于点.
(1)求此反比例函数的表达式;
(2)若点在轴上,且,求点的坐标.
如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为( )
A. 5 B. C. 7 D.
证明三角形的内角和定理.