题目内容
下列说法中不正确的是
- A.全等三角形的周长相等
- B.全等三角形的面积相等
- C.全等三角形能重合
- D.全等三角形一定是等边三角形
D
分析:根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.
解答:
A、∵△ABC≌△DEF,
∴AB=DE,AC=DF,BC=EF,
∴AB+AC+BC=DE+DF+EF,故本选项错误;
B、∵△ABC≌△DEF,
即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;
C、∵△ABC≌△DEF,
即△ABC和△DEF放在一起,能够完全重合,故本选项错误;
D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;
故选D.
点评:本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.
分析:根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.
解答:
A、∵△ABC≌△DEF,
∴AB=DE,AC=DF,BC=EF,
∴AB+AC+BC=DE+DF+EF,故本选项错误;
B、∵△ABC≌△DEF,
即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;
C、∵△ABC≌△DEF,
即△ABC和△DEF放在一起,能够完全重合,故本选项错误;
D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;
故选D.
点评:本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.
练习册系列答案
相关题目