题目内容

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:
①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.
其中正确结论的个数是(

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:∵抛物线的开口方向向下,∴a<0;
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,即b2>4ac,①正确;
由图象可知:对称轴x= =﹣1,
∴2a=b,2a+b=4a,
∵a≠0,
∴2a+b≠0,②错误;
∵图象过点A(﹣3,0),
∴9a﹣3b+c=0,2a=b,
∴9a﹣6a+c=0,c=﹣3a,③正确;
∵抛物线与y轴的交点在y轴的正半轴上,
∴c>0
由图象可知:当x=1时y=0,
∴a+b+c=0,④正确.
故选:C.
【考点精析】关于本题考查的二次函数图象以及系数a、b、c的关系,需要了解二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网