题目内容
【题目】甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图象如图所示,结合图象解答下列问题:
(1)乙车休息了 h.
(2)求乙车与甲车相遇后y乙关于x的函数表达式,并写出自变量x的取值范围.
(3)当两车相距40km时,求x的值.
【答案】(1)0.5;(2)y乙=80x;(3)x=2或x=.
【解析】
试题分析:(1)先把y=200代入甲的函数关系式中,可得x的值,再由图象可知乙车休息的时间;
(2)根据待定系数法,可得休息后,乙车与甲车相遇后y乙关于x的函数表达式;
(3)分类讨论,0≤x<2.5,y甲减y乙等于40千米,2.5≤x≤5时,y乙减y甲等于40千米即可.
试题解析:(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,
可得:,
解得:.
所以函数解析式为:y=-80x+400;
把y=200代入y=-80x+400中,可得:200=-80x+400,
解得:x=2.5,
所以乙车休息的时间为:2.5-2=0.5小时;
(2)设乙车与甲车相遇后y乙关于x的函数表达式为:y乙=k1x+b1,
y乙=k1x+b1图象过点(2.5,200),(5,400),
得,
解得,
乙车与甲车相遇后y乙与x的函数解析式y乙=80x;
(3)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),
解得k=100,
∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,
0≤x<2.5,y甲减y乙等于40千米,
即400-80x-100x=40,解得 x=2;
2.5≤x≤5时,y乙减y甲等于40千米,
即2.5≤x≤5时,80x-(-80x+400)=40,解得x=,
综上所述:x=2或x=.