搜索
题目内容
在
中,角
所对的边分别为
,且满足
,
. (I)求
的面积; (II)若
,求
的值.
试题答案
相关练习册答案
解析:(Ⅰ)
又
,
,而
,所以
,所以
的面积为:
(Ⅱ)由(Ⅰ)知
,而
,所以
所以
练习册系列答案
课时全练讲练测全程达标系列答案
课时天天练系列答案
课时学案系列答案
课堂达标100分系列答案
课堂过关循环练系列答案
课堂检测10分钟系列答案
课堂练习系列答案
课堂练习检测系列答案
课堂作业四点导学学案精编系列答案
课易通三维数字课堂系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a
2
=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a
2
=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
(2007•东城区一模)我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a
2
=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a
2
=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
(2013•莆田质检)新知认识:在△ABC中,∠A,∠B,∠C所对的边分别用a,b,c表示,如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.
(1)特殊验证:如图1,在△ABC中,若a=
3
,b=1,c=2.求证:△ABC为倍角三角形﹔
(2)模型探究:如图2,对于任意的倍角三角形,若∠A=2∠B.求证:a
2
=b(b+c)﹔
(3)拓展应用:在△ABC中,若∠C=2∠A=4∠B.求证:
b
a
+
b
c
=1
.
阅读与证明:在一个三角形中,如果有两个角相等,那么这两个角所对的边也相等.如图①,在△ABC中,如果∠B=∠C,那么AB=AC,这一结论可以说明如下:
解:过点A作AD⊥BC于D,则∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
请你仿照上述方法在图②中再选一种方法说明以上结论.
操作:如图③,点O为线段MN的中点,直线PQ与MN相交于点O,过点M、N作一组平行线分别与PQ交于点M′、N′,则线段MM′一定等腰NN′.想一想,为什么?
根据上述阅读与证明的结论以及操作得到的经验完成下列探究活动.探究:如图④,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并说明你的结论.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总