题目内容
在Rt△ABC中,∠C=90°,cosA=,AC=2,则BC=________.
一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20米,一个主持人现在站在A处,那么他应至少再走________米才最理想.
A、B、C、D四人做传数游戏,A任报一个数给B,B把这个数减1传给C,C再把所得的数平方后传给D,D把所听到的数加1报出答案.
(1)设A报给B的数为x,请把D所报出的答案用代数式描述出来;
(2)若A报的数为21,则D的答案是多少?
(3)若D报出的答案是26,则A传给B的数是____________.
如图,已知线段AB=a(a>2),CD=2,线段CD在线段AB上移动(点C不与点A重合,点D不与点B重合),当线段AC=x时,图中所有线段的和为( )
A. 3a+2 B. 2a+2 C. 3a+x-2 D. 2a+x+2
单项式-的系数是( )
A. - B. C. -1 D. 1
如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan∠DCB的值是( )
A. B. C. D.
如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得∠A=30°,∠D=45°,AB=60 m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)
某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .
请将下列证明过程补充完整:
已知:如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求证:∠E=∠F
证明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性质)
∴AE∥PF( )
∴∠E=∠F( )