题目内容
【题目】如图,将矩形ABCD折叠,使点A与点C重合,折痕交BC、AD分别于点E、F.
(1)求证:四边形AECF是菱形;
(2)若AB=4,BC=8,求菱形AECF的面积.
【答案】
(1)
证明:由折叠的性质可得:OA=OC,EF⊥AC,
∴AF=CF,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠FAC=∠ECA,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,
∴四边形AECF是平行四边形,
∵AF=CF,
∴四边形AECF是菱形
(2)
解:设CE=x,则AE=x,be=8﹣x,
∵四边形ABCD是矩形,
∴∠B=90°,
∴BE2+AB2=AE2,
∴(8﹣x)2+42=x2,
解得:x=5,即EC=5,
∴S菱形AECF=ECAB=5×4=20
【解析】(1)由折叠的性质可得:OA=OC,EF⊥AC,即可证得AF=CF,又由四边形ABCD是矩形,易证得△AOF≌△COE,可得OE=OF,继而可证得四边形AECF是菱形;(2)首先设CE=x,则AE=x,be=8﹣x,然后由勾股定理求得(8﹣x)2+42=x2 , 继而求得答案.
【考点精析】通过灵活运用菱形的性质和矩形的性质,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.
练习册系列答案
相关题目