题目内容
观察下列运算并填空:
1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……
根据以上结果,猜想:(n+1)(n+2)(n+3)(n+4)+1=________。
(n2+5n+5)2
观察可知,等式左边是四个连续整数的积与1的和,右边是第一个数与第四个数的乘积与1的和的平方,然后根据规律进行解答即可.
观察可知,等式左边是四个连续整数的积与1的和,右边是第一个数与第四个数的乘积与1的和的平方,然后根据规律进行解答即可.
练习册系列答案
相关题目