题目内容
(2013•长沙)如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
分析:(1)求出∠ADB的度数,求出∠ABD+∠DBC=90°,根据切线判定推出即可;
(2)分别求出等边三角形DOB面积和扇形DOB面积,即可求出答案.
(2)分别求出等边三角形DOB面积和扇形DOB面积,即可求出答案.
解答:(1)证明:∵AB为⊙O直径,
∴∠ADB=90°,
∴∠BAC+∠ABD=90°,
∵∠DBC=∠BAC,
∴∠DBC+∠ABD=90°,
∴AB⊥BC,
∵AB为直径,
∴BC是⊙O切线;
(2)解:连接OD,过O作OM⊥BD于M,
∵∠BAC=30°,
∴∠BOD=2∠A=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OB=BD=OD=2,
∴BM=DM=1,
由勾股定理得:OM=
,
∴阴影部分的面积S=S扇形DOB-S△DOB=
-
×2×
=
π-
.
∴∠ADB=90°,
∴∠BAC+∠ABD=90°,
∵∠DBC=∠BAC,
∴∠DBC+∠ABD=90°,
∴AB⊥BC,
∵AB为直径,
∴BC是⊙O切线;
(2)解:连接OD,过O作OM⊥BD于M,
∵∠BAC=30°,
∴∠BOD=2∠A=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OB=BD=OD=2,
∴BM=DM=1,
由勾股定理得:OM=
3 |
∴阴影部分的面积S=S扇形DOB-S△DOB=
60π•22 |
360 |
1 |
2 |
3 |
2 |
3 |
3 |
点评:本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠ABD+⊕DBC=90°和分别求出扇形DOB和三角形DOB的面积.
练习册系列答案
相关题目