题目内容
【题目】如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是__________.
【答案】1.
【解析】先利用配方法得到抛物线y=x2-2x的顶点坐标为(1,-1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2-2x,然后利用阴影部分的面积等于三角形面积进行计算.
解:y=x2-2x=(x-1)2-1,即平移后抛物线的顶点坐标为(1,-1),
所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2-2x,
所以对称轴与两抛物线所围成的阴影部分的面积=×1×2=1.
故答案为1.
“点睛”本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
练习册系列答案
相关题目