题目内容
【题目】如图,△ABC的顶点A、B、C都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形,试在方格纸上按下列要求画格点三角形:
(1)将△ABC先向下平移4个单位,再向右平移2个单位得到△A1B1C1;(A1、B1、C1的对应点分别为A、B、C)
(2)线段AC与A1C1的关系 ;
(3)画AB边上的中线CD和高线CE;(利用网格点和直尺画图)
(4)连接CC1,则∠BCC1= °.
【答案】(1)见解析(2)平行且相等(3)见解析(4)45°
【解析】分析:(1)将A、B、C按平移条件找出它们的对应点,顺次连接,即得到平移后的图形;
(2)由平移的性质即可得到结论;
(3)用尺规作图即可;
(4)利用勾股定理的逆定理得出△BCC1是等腰直角三角形进而求出∠BCC1.
详解:(1)如图所示:
(2)由平移的性质可得:AC与A1C1平行且相等;
(3)如图;
(4)∵BC==,BC1==,CC1==2,BC2+BC=C1C2,∴△BCC1是等腰直角三角形,∴∠BCC1=45°.
故答案为:45.
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
【题目】元旦期间,为了满足颍上县百姓的消费需要,某大型商场计划用170000元购进一批家电,这批家里的进价和售价如表:
类别 | 彩电 | 冰箱 | 洗衣机 |
进价(元/台) | 2000 | 1600 | 1000 |
售价(元/台) | 2300 | 1800 | 1100 |
若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商场购买冰箱x台.
(1)用含x的代数式表示洗衣机的台数.
(2)商场至多可以购买冰箱多少台?
(3)购买冰箱多少台时,能使商场销售完这批家电后获得的利润最大?最大利润为多少元?