题目内容
分解因式:x2-9=_ ▲ .
如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)
计算或化简(1)(—3)0+(+0.2)2009×(+5)2010
(2)2(x+4) (x-4)
如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).
(1)求直线CD的函数表达式;
(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.
如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.
若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……
△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是__,点A2018的坐标是 .
某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( )
A. 0 B. C. D. 1
我们把形如()的四位正整数叫做“三拖一数”,例如:,都是三拖一数.
(1)一个三拖一数能被7整除,求这个三拖一数;
(2)一个三拖一数()与50的差的2倍与另外一个不同的三拖一数()与75的和的3倍的和正好能被13整除,求这两个三拖一数.
A. B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时相遇,6小时后 ,甲所余路程为乙所余路程的2倍,求两人的速度. 设甲、乙的速度分别为x千米/小时和y千米/小时,下列方程组正确的是( ).
A.
B.
C.
D.
在△ABC中,∠BAC=45°,若BD=2,CD=3,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明.
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求四边形AEMF的面积.