题目内容
【题目】如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D。
(1)求证: ;
(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即,如T(60°)=1.
①理解巩固:T(90°)= ,T(120°)= ,若α是等腰三角形的顶角,则T(α)的取值范围是 ;
②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1)。
(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
【答案】(1)证明见解析;(2) 0<T(a)<2 11.6
【解析】试题分析:(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;
(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;
②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.
试题解析:(1)∵AB=AC,DE=DF,
∴,
又∵∠A=∠D,
∴△ABC∽△DEF,
∴;
(2)①如图1,∠A=90°,AB=AC,
则,
∴T(90°)=,
如图2,∠A=120°,AB=AC,
作AD⊥BC于D,
则∠B=30°,
∴BD=AB,
∴BC= AB,
∴T(120°)=
∵AB-AC<BC<AB+AC,
∴0<T(α)<2,
②∵圆锥的底面直径PQ=8,
∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,
设扇形的圆心角为n°,
则=8π,
解得,n=160,
∵T(80°)≈1.29,
∴蚂蚁爬行的最短路径长为1.29×9≈11.6.
练习册系列答案
相关题目